179. Asymmetric and *'anti'-* **Selective Aldolisations of Acetates and Propionates**

Preliminary Communication')

by Wolfgang Oppolzer* and José Marco-Contelles

Département de chimie organique, Université de Genève, CH-1211 Genève

(11.V111.86)

Starting from acetates **1** and propionates *6,* TiCI4-mediated addition of their silylketene acetals **2** and **7** to aldehydes gave aldols **4** and *9,* respectively, with high n-face and 'anti'differentiation *(Schemes,* and *Tables I* and 2). Alternation of the (E/Z) -enolate geometry led to reversed α - and β -inductions $(7\rightarrow 9b, 8\rightarrow 10b)$. Non-destructive removal of the auxiliary yielded enantiomerically pure β -hydroxycarboxylic acids 13.

A rapidly increasing number of studies and applications attest the eminent importance of asymmetric aldol reactions in organic synthesis *(cf.* [I]). Despite these efforts, it is only very recently that enantiomerically pure acetate aldols [2] or 'anti'-propionate aldols $[2b]$ [3] have been obtained by direct aldolisations²).

We describe here a practical solution to this problem in extension of former work on asymmetric α -alkylations [5], α -acetoxylations [6], and α -halogenation [7] reactions all of which feature the camphor-sulfonamide derivative $(-)$ -X*OH (and its $(+)$ -antipode) as chiral auxiliary³) and which are consistent with a preferential $C(\alpha)$ -Si-face attack **I**.

Scheme 1 and Table $1⁴$) summarize our results on π -selective aldolisations of sulfonamide-shielded isobornyl acetate **1,** readily prepared by acetylation of X*OH with AcCl/ AgCN [5] (toluene, 70° , 6 h \rightarrow 93%, m.p. 172–174°). Addition of the corresponding lithium enolate **2** (Met = Li) to aldehydes (Method *A,* Entries *1-4)* gave aldols **3** and **4** in good overall yields but with low stereodifferentiation in favor of 4 (10–14% d.e. by HPLC).

On the other hand, TiCl₄-promoted *Mukaiyama* -type aldolisations [9] of the O-silylketene acetal **2** (Met = Si(t-Bu)Me₂) with aromatic and aliphatic aldehydes (*Method B*,

^{&#}x27;j Presented in part at the IASOC-11-Meeting, Ischia, May **1986.**

²j See [4] for an indirect asymmetric synthesis of acetate and 'anti'-propionate aldols (via oxidative C-Si bond cleavage) using a camphorsultam auxiliary.

³) **(-)-X*OH** and **(+)-X*OH,** which are commercially available now, have been applied in asymmetric *Diels-Alder* reactions **[E)** and 1,4-additions of RCu **IS].**

⁴j All new compounds were characterized by **IR,** 'H-NMR and **MS.**

Entry	Series	R^2	$Method^a$)	Yield $[\%]$ ^b) $3 + 4$	Ratio 3/4 (crude)	Yield $[%]$ ^b) Ratio 3/4 of cryst. 4	$(c$ ryst. $)$	Yield [%] $4 \rightarrow 5$	e.e. $\frac{6}{6}$ 5
	a	C_6H_5	A	83	44:56				
	b	i -C ₁ H ₇	\boldsymbol{A}	85	45:55				
3	$\mathbf c$	C_3H_7	\boldsymbol{A}	90	43:57				
4	d	C_8H_{17}	\boldsymbol{A}	82	43:57				
	а	C_6H_5	В	56(62)	8:92	45(50)	0.5:99.5	65	99
6	b	i -C ₆ H ₇	В	47(55)	1:99	45(53)	0.5:99.5	59	98
	c	C_1H_7	B	48(57)	8:92	42(49)	0.7:99.3	60	98
8	d	C_8H_{17}	B	51(63)	8:92	36(44)°	$3.2:96.8^{\circ}$	66	92
9	a	C_6H_5	C	40(70)	5:95	38(68)	0.5:99.5	\sim	
10	b	i C ₂ H ₇		57(71)	4:96	45(56)	2.5:97.5		

Table 1. Asymmetric Acetate Aldolisation/Saponification $1 \rightarrow 4(+3) \rightarrow 5$

 $a₁$ A: 1) 1 + LiN(i-Pr), (1.5 equiv.), THF, -78°; 2) R²CHO, -78°, 1 h; except in *Entry 3* where LiN(i-Pr)-(cyclohexyl) (LICA) was used as the base. B: 1) 1 + LICA (1.5 equiv.), THF, -78°; 2) Me₂(t-Bu)SiCl (2.2 equiv.), HMPA (2 equiv.), -78° -0°; 3) addition to R^2CHO (1.1 equiv.), TiCl₄ (1.2 equiv.) in CH₂Cl₂, -78°, 0.5 h. C: 1) 1 + LiN(i-Pr)₂ (1.5 equiv.), THF/HMPA 3:1, -78°, 1 h; 2) Me₂(t-Bu)SiTf (2.2 equiv.), -78° ->0°; 3) addition of $BF_1 \cdot Et_2O$ (1.2 equiv.) to mixture of crude silylketene acetal + R²CHO (1.1 equiv.), -78°, 0.5 h. b_1 Yields in parentheses are based on recovered ester 1.

 \mathbf{c}_1 Non-crystalline solid.

Entries 5–8) furnished predominantly aldols 4 in 84 to 89% diastereoisomeric excess (d.e.) and in 47 to 56% yield⁵). All products 4 (except amorphous 4d) were efficiently purified to 98.5–99% d.e. by subsequent crystallization (pentane or hexane). Nondestructive removal of the auxiliary X^*OH (recovered nearly quantitatively) by saponification (1.5 N KOH/MeOH, 25°, 2–6 h) gave β -hydroxy acids 5 in 58–66% yield. Chiroptic comparison of free acids 5 with published values⁶) and 'H-NMR analyses (Eu(hfc)₁) [10d] of their methyl esters $(CH, N₂)$ revealed the depicted absolute configurations and enantiomeric purities. The sense and extent of induction remained identical when using

 $5₁$ Yields of $3 + 4$ were lowered by competitive C-silylation in the step $1 \rightarrow 2$. This side reaction remained unaffected by the silylation conditions of Method C.

 $6₁$ Observed [α]_D values (25°, CHCl₃, if not mentioned otherwise, c [g/100 ml]): 5a: +14.9° (EtOH, $c = 1.94$), see [2b]. 5b: +36.9° (c = 1.59), see [2b]. 5c: +25.8° (c = 0.53), see [10a]. 5d: +15.0° (c = 1.15), see [10b]. 9a: -49.0° $(c = 0.44)$, see [10c]. 12a (from *Entry 11*): +20.6° ($c = 0.46$), see [10a]. 9b: ~15.3° ($c = 0.6$), see [10d]. 9c: -5.0° $(c = 0.2)$, see [10d]. **9d**: -5.9° ($c = 0.44$), see [10d]. **10b**: +9.6° ($c = 0.31$), see [10d].

 $BF_3 \cdot Et_3O$ (instead of TiCl_a) in the absence or presence *(Method C)* of hexamethylphosphoric triamide (HMPA).

We then studied the aldol reactions of propionate 6 as depicted in Scheme 2 and Table 2⁴). Addition of the lithium enolate 7 (Met = Li) to aldehydes *(Method A, Entries* $11-14$) afforded mainly the 'anti'-aldols 9 and 10 together with one minor 'syn'-product in 84–90% overall yield. The crude product mixtures were directly analyzed by HPLC showing complete separation of the 'anti'-isomers 9 and 10 in all cases and one peak corresponding to 11 or 12, except in the series $e(R^2 = C_2H_5)$ where the minor 'anti'- and the 'syn'-isomer(s) were inseparable from each other⁷). The 'syn'/'anti'-configuration of

Entry	Series	R^2	Meth- od^a)	Yield $[\%]$ ^b) 9 to 12	Ratio ^c 9/10/ $(11 + 12)$	Major- product Yield $[%]$ ^b) $(c$ ryst. $)$	Yield $[\%]$ 13	Config. 13	e.e. $[\%]$ 13
\bar{H}	a	C_6H_5	\boldsymbol{A}	87	41.5:33:25.5				
12	b	i -C ₃ H ₇	\boldsymbol{A}	87	45.6:42.7:11				
1 ₃	$\mathbf c$	C_3H_7	\boldsymbol{A}	90	36:39:25				
14	e	C_2H_5	\boldsymbol{A}	84(91)	37.3:62.7				
15	$\mathbf a$	C_6H_5	B	44(71)	77:4:19	30(53)	83	(2R,3S)	99
16	þ	$i - C_2H_7$	B	60(84)	90.9:7.3:1.8				
17	c	C_1H_7	B	50(90)	87.4:6.6:6	42(75)	83	(2R,3R)	99
18	e	C_2H_5	B	30(75)	84:16	30(75)	90	(2R,3R)	99
19	þ	$i-C_3H_7$	C	58(85)	71:2:27		-		
20	Þ	i -C ₃ H ₇	D	57(81)	6:87.5:6.5	49(70)	80	(2S, 3S)	99

Table 2. Asymmetric Propionate Aldolisation/Saponification $6 \rightarrow 9$ and $10 \rightarrow 13$

A: 1) 6 + LiN(i-Pr), (1.1 equiv.), THF, -78°; 2) R²CHO, -78°, 0.5 h. a B: 1) 6 + LICA (1.5 equiv.), THF, -78°; 2) Me₂(t-Bu)SiCl (2.2 equiv.), HMPA (2 equiv.), -78° - 0° ; 3) addition to R²CHO (1.1 equiv.), TiCl₄ (1.2 equiv.) in CH₂Cl₂, -78°, 0.5 h. C: Analogous to A but using $BF_3 \cdot Et_2O$ instead of TiCl₄. $D: 1$) 6 + LiN(i-Pr)₂ (1.5 equiv.), THF/HMPA 3:1, -78°, 1 h; 2) Me₂(t-Bu)SiTf (2.2 equiv.), -78° -0°; 3) addition of $BF_3 \cdot Et_2O$ (1.2 equiv.) to mixture of crude silylketene acetal + R²CHO (1.1 equiv.), -78°, 0.5 h.

b, Yields in parentheses are based on recovered ester 6.

 \mathfrak{c}_1 Usually, only one 'syn'-product was isolated which was either identified as $12a$, $11b$, or not assigned (series c); product 9e was inseparable from its 'syn'-isomer(s).

 γ In *Entry 11*, a fourth, unidentified product was formed in 0.6% yield.

the isolated (flash chromatography) diastereoisomers was readily assigned on examination of the H-C(2) signal in 'H-NMR [1b] $(2.45-2.80$ ppm) which shows a vicinal coupling constant $J(2,3) = 7.0 - 7.5$ Hz for the 'anti'-products **9b**, 10b, 9c, 10c, and 9e *vs.* a coupling constant $J(2,3) = 2.5-3.0$ Hz for the 'syn'-products **12a** and **11b**.

Kinetically controlled deprotonation [1 11 of propionate *6* with LiN(i-Pr)(cyclohexyl) followed by enolate O -silylation gave a *(tert*-butyl)dimethylsilylketene acetal to which we assign the (E)-configuration **7.** Treatment of **7** with aldehyde/TiCl, (Method *B,* Entries *15-IS)* furnished the corresponding aldols with greatly improved 'anti'/ *'syn'* ratios (4: 1 to 55:1) and $(2R)$ -'anti'/ $(2S)$ -'anti' ratios (13:1). The major 'anti'-aldols **9** were readily purified to 99% d.e. by flash chromatography and crystallization. Nondestructive cleavage of the auxiliary from the aldol was accomplished without α -epimerization by reduction with $LiAlH₄$ (e.g. $11b \rightarrow (2S,3S)-2,4$ -dimethyl-1,3-pentadiol) or, more interestingly, by mild hydrolysis with 1.6 N LiOH (40 equiv. in THF/H₂O 1:1.2, r.t., 9-14 days) to give β -hydroxy acids 13 in 83–90% yield). The tabulated absolute configurations of 13 follow from chiroptic comparison with published values⁶). Acids 13 were shown to be \geqslant 99% enantiomerically pure by measuring the Me0 signals of their methyl esters in the **'H-**NMR in the presence of the chiral shift reagent $Eu(hfc)$, [10d].

Two further trends are evident from the data in Table 2. First, the use of $BF_3 \cdot Et_2O$ (*Entry 19*) leads to a decrease of the 'anti'/'syn' ratio as compared to that of TiCl₄ (*Entry 16).* Second, the (Z)-ketene acetal8 was obtained by deprotonation of *6* under thermodynamic control [I 11; **8** furnished aldol **10b** with excellent 'anti' selection even under the influence of BF_1 \cdot Et₁O *(Method D, Entry 20).* Accordingly, each of the enantiomeric

Scheme 3

(2R,3R)- or (2S,3S)-hydroxy acids **13** may be prepared in 99% e.e. from the same precursor depending on the $(E)/(Z)$ -geometry of the enolate intermediate.

The observed stereoselectivities may be rationalized on inspection of the following 'open' transition state topologies [3a] $A-D$ *(Scheme 3)*. In analogy to former $C(\alpha)$ -Siface-selective electrophilic attack to (E) -'enolates' **I** (Met = Li or Si Me₃) [5–7], we assume a synperiplanar disposition of the C -OMet/(O)C-H bonds and an aldehyde approach from the less shielded olefinic back face. In line with previous suggestions, we assume a Lewis-acid coordination with the aldehyde 0-atom *'cis'* to its H-atom [3a] which, due to ML_n/R ^t repulsion, destabilizes transition states **B** and **D**. In the propionate series $(R¹ = CH₃)$, we suppose this nonbonding interaction to override that between $R²$ and OX* which disfavors transition states **A** and **D**. Thus, the preferences $A > B$ and $C > D$ seem to govern the 'anti'-selective formation of aldols 9 or 10 from the (E) - or (Z) -ketene acetals **7** or **8** (Met = Si(t-Bu)Me₂), respectively. For the acetate aldolisations ($R^1 = H$), the R^1/ML , repulsion becomes irrelevant, and it is the *gauche* interaction R^2/OX^* which disfavors $A = D$ over $B = C$. Accordingly, aldols 4 appear to be formed *via* the latter transition state. In agreement with this postulate, acetate aldolisations $1 \rightarrow 2 \rightarrow 4$ display similar inductions with $BF_3 \cdot Et_2O$ or TiCl₄, whereas the nature of the Lewis acid is critical in the propionate series $6b \rightarrow 7b \rightarrow 9b$ (*Entries 16* and *19*). On comparing the aldolisation of the (E) - $(7\rightarrow 9b)$ *vs.* that of the (Z) -ketene acetal $(8\rightarrow 10b)$, the latter reveals a higher *anti* selection consistent with the preferences $\mathbf{A} > \mathbf{B}$ and $\mathbf{C} \gg \mathbf{D}$ (*Entries 19* and *20*).

In practical terms we believe that the above aldolisations compare favorably with alternative $[2]$ $[3]$ or less direct²) approaches to enantiomerically pure acetate aldols and '*anti'*-propionate aldols. This work highlights once more the versatility of simple camphorsulfonic-acid-derived auxiliaries in asymmetric synthesis [5-71.

Financial support of this work by the *Swiss Nutional Science Fuundution, Sandoz AG.* Basel, and *Giuaudan SA,* Vernier, is gratefully acknowledged. We also thank Mr. *J. P. Suulnier,* Mr. *A. Pinto* and Mrs. *D. CIgmenf* for NMR and MD measurements.

REFERENCES

- **[l]** a) D. A. Evans, J. V. Nelson, T. R. Taber, *Topics Stereochem.* **1982,** *13,* 1 ; b) C. H. Heathcock, 'Asymmetric Synthesis', Ed. **J.** D. Morrison, Academic Press, New York, **1984,** Vol. **3,** Part B, p. I 11; c) **S.** Masamune, W. Choy, J. **S.** Petersen, L. R. Sita, *Anxew. Chem.* **1985,97, 32;** *ibid. Int. Ed.* **1985,24,** I.
- **[2]** a) M. Braun, R. Devant, *Tetrahedron Left.* **1984,25,5031;** *Chem. Err.* **1986,** *IIY,* **2191;** b) G. Helmchen, U. Leikauf, I. Taufer-Knopfel, *Angew. Chcm.* **1985,97,874;** *;bid. Inf. Ed.* **1985,24, 874.**
- **[3]** a) C. H. Heathcock, K.T. **Hug,** L.A. Flippin, *Tetrahedron Lett.* **1984,25,5973;** b) C. Palazri, L. Colombo, **C.** Gennari, *ibid.* **1986,27, 1735.**
- **[4]** W. Oppolzer, R. **J.** Mills, W. Pachinger, T. Stevenson, *Helu. Chim. Actu* **1986,6Y, 1542.**
- **[5]** W. Oppolzer, P. Dudfield, T. Stevenson, T. Godel, *Helu. Chim. Acta* **1985,68, 212.**
- **[6]** W. Oppolzer, P. Dudfield, *Helu. Chim. Acta* **1985,68, 216.**
- **[7]** W. Oppolzer, P. Dudfield, *Tetrahedron Lett.* **1985,26, 5037;** W. Oppolrer, R. Pedrosa, R. Moretti, *ibid. 1986,* **27, 831.**
- [XI W. Oppolzer, *C.* Chapuis, G. Bernardinelli, *Tetrahedron Lett.* **1984,25, 5885.**
- **[Y]** T. Mukaiyama, K. Narasaka, **K.** Banno, *J. Am. Chem. Soc.* **1974,** 96, **7503;** T.H. Chan, T. Aida, P.W.K. Lau, V. Gorys, D.N. Harpp, *Tetrahedron Lett.* **1979,4029.**
- **(101** a) D. A. Evans, J. Bartroli, T.L. Sih, *J. Am. Chem. Soc.* **1981,** *103,* **2127;** b) J.D. Elliot, **J.** Steele, W.S. Johnson, *Tetrahedron Lett.* **1985,26,2535;** c) T. Matsumoto, **I.** Tanaka, K. Fukui, *Bull. Chem. Soc. Jpn.* **1971,** *44,* **3378;** d) A. **1.** Meyers, Y. Yamamoto, *Tetrahedron* **1984,40,2309.**
- [I I] R. E. Ireland, R. **H.** Mueller, A. K. Willard, *J. Am. Chem. Soc.* **1976,** *98,* **2868.**