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179. Asymmetric and ‘anti’-Selective Aldolisations of Acetates and Propionates
Preliminary Communication')
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Starting from acetates 1 and propionates 6, TiCl,-mediated addition of their silylketene acetals 2 and 7 to
aldehydes gave aldols 4 and 9, respectively, with high =-face and ‘anti’ differentiation (Schemes, and Tables 1 and
2). Alternation of the (E/Z)-enolate geometry led to reversed a- and g-inductions (7-—9b, 8—10b). Non-destruc-
tive removal of the auxiliary yielded enantiomerically pure f-hydroxycarboxylic acids 13.

A rapidly increasing number of studies and applications attest the eminent impor-
tance of asymmetric aldo! reactions in organic synthesis (¢f- [1]). Despite these efforts, it is
only very recently that enantiomerically pure acetate aldols [2] or ‘anti’-propionate aldols
[2b] [3] have been obtained by direct aldolisations?).
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We describe here a practical solution to this problem in extension of former work on
asymmetric o -alkylations [5], a-acetoxylations [6], and «-halogenation [7] reactions all of
which feature the camphor-sulfonamide derivative (—)-X*OH (and its (+)-antipode) as
chiral auxiliary®) and which are consistent with a preferential C(a)-Si-face attack L.

Scheme 1 and Table 1*) summarize our results on 7 -selective aldolisations of sulfona-
mide-shielded isobornyl acetate 1, readily prepared by acetylation of X*OH with AcCl/
AgCN [5] (toluene, 70°, 6 h—93%, m.p. 172-174°). Addition of the corresponding
lithium enolate 2 (Met = Li) to aldehydes ( Method A, Entries 1-4) gave aldols 3 and 4 in
good overall yields but with low stereodifferentiation in favor of 4 (10-14% d.e. by
HPLC).

On the other hand, TiCl,-promoted Mukaiyama-type aldolisations [9] of the O -silyl-
ketene acetal 2 (Met = Si(¢-Bu)Me,) with aromatic and aliphatic aldehydes (Method B,

!y Presented in part at the IASOC-II-Meeting, Ischia, May 1986.

3)  See [4] for an indirect asymmetric synthesis of acetate and ‘anti’-propionate aldols (via oxidative C—Si bond
cleavage) using a camphorsultam auxiliary.

% (~)-X*OH and (+)-X*OH, which are commercially available now, have been applied in asymmetric Diels-
Alder reactions [8] and 1,4-additions of RCu {5].

4 All new compounds were characterized by IR, 'H-NMR and MS.
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Scheme 1
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Table 1. Asymmetric Acetate Aldolisation/Saponification 1+4(+3)—5

Entry  Series R Method®)  Yield [%]®) Ratio 3/4  Yield [%]%) Ratio3/4 Yield [%] e.e. [%]
3+4 (crude) of cryst. 4 (cryst.) 45 5
1 a C¢H; A 83 44:56 - - - -
2 b i-C;H; 4 85 45:55 - - - -
3 c C;H;, A 90 43:57 - - —
4 d CgH;;, 4 82 43:57 - - -
5 a CgHj B 56(62) 8:92 45(50) 0.5:99.5 65 9
6 b -C¢H; B 47(55) 1:99 45(53) 0.5:99.5 59 98
7 ¢ C3H, B 48(57) 8:92 42(49) 0.7:99.3 60 98
8 d CeHp B 51(63) 8:92 36(44)°) 3.2:96.8%) 66 92
9 a CeHs C 40(70) 5:95 38(68) 0.5:99.5 - -
10 b i-C;H; C 57(71) 4:96 45(56) 2.5:97.5 - -

%) A: 1) 1+ LiN(@-Pr), (1.5 equiv.), THF, —78°; 2) R2CHO, —78°, 1 h; except in Entry 3 where LiN(i-Pr)-

)
9

(cyclohexyl) (LICA) was used as the base.

B: 1) 1+ LICA (1.5 equiv.), THF, —78°; 2) Me,(t-Bu)SiCl (2.2 equiv.), HMPA (2 equiv.), —78°—=0°; 3)
addition to RZCHO (1.1 equiv.), TiCl, (1.2 equiv.) in CH,Cl,, —78°,0.5 h.

C: 1) 1+ LiN(@-Pr), (1.5 equiv.), THF/HMPA 3:1, —78°, 1 h; 2) Me,(¢+-Bu)SiTf (2.2 equiv.), —78°—0°; 3)
addition of BF; - Et,0 (1.2 equiv.) to mixture of crude silylketene acetal + R?CHO (1.1 equiv.), —78°, 0.5 h.
Yields in parentheses are based on recovered ester 1.

Non-crystalline solid.

Entries 5-8) furnished predominantly aldols 4 in 84 to 89% diastereoisomeric excess

(d.e

) and in 47 to 56 % yield®). All products 4 (except amorphous 4d) were efficiently

purified to 98.5-99% d.e. by subsequent crystallization (pentane or hexane). Nonde-
structive removal of the auxiliary X*OH (recovered nearly quantitatively) by saponifica-
tion (1.58 KOH/MeOH, 25°, 2-6 h) gave f-hydroxy acids 5 in 58—66 % yield. Chiroptic
comparison of free acids 5 with published values®) and '"H-NMR analyses (Eu(hfc),) [10d]
of their methyl esters (CH,N,) revealed the depicted absolute configurations and enantio-
meric purities. The sense and extent of induction remained identical when using

%)
%)

Yields of 3+ 4 were lowered by competitive C-silylation in the step 1—-2. This side reaction remained
unaffected by the silylation conditions of Method C.

Observed [a], values (25°, CHCl,, if not mentioned otherwise, ¢ [g/100 ml}): 5a: +14.9° (EtOH, ¢ = 1.94), see
[2b]. 5b: +36.9° (¢ = 1.59), see [2b]. Sc: +25.8° (¢ = 0.53), see [10a]. 5d: +15.0° (¢ = 1.15), see [10b]. 9a: —49.0°
(¢ =0.44), see [10c]. 12a (from Entry 11): +20.6° (¢ = 0.46), see [10a]. 9b: —15.3° (¢ = 0.6), see [10d]. 9¢: —5.0°
(¢ =0.2), see [10d]. 9d: —5.9° (¢ = 0.44), see {10d]. 10b: +9.6° (¢ = 0.31), see [10d].
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BF, - Et,0O (instead of TiCl,) in the absence or presence ( Method C) of hexamethylphos-
phoric triamide (HMPA).

We then studied the aldol reactions of propionate 6 as depicted in Scheme 2 and
Table 2%). Addition of the lithium enolate 7 (Met = Li) to aldehydes ( Method A, Entries
11-14) afforded mainly the ‘anti’-aldols 9 and 10 together with one minor ‘syn’-product
in 84-90% overall yield. The crude product mixtures were directly analyzed by HPLC
showing complete separation of the ‘anti’-isomers 9 and 10 in all cases and one peak
corresponding to 11 or 12, except in the series e (R? = C,H,) where the minor ‘anti’- and
the ‘syn’-isomer(s) were inseparable from each other’). The ‘syn’/ ‘anti’-configuration of

Scheme 2
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Table 2. Asymmetric Propionate Aldolisation|Saponification 6—9 and 10—13
Entry Series R? Meth-  Yield[%]?) Ratio®) Major- Yield [%] Config. e.e. [%]
od®) 9t012 9/10/ product 13 13 13
(11 + 12) Yield [%]?)
(cryst.)
11 a CHs 4 87 41.5:33:25.5 - - -
12 b i-C3H, A 87 45.6:42.7:11 - - - -
13 ¢ C3H, A 90 36:39:25 - - - -
14 e C,H; A 84(91) 37.3:62.7 - - - -
15 a C¢Hs B 44(71) 77:4:19 30(53) 83 2R3S) 99
16 b i-C;H; B 60(84) 90.9:7.3:1.8 - - - -
17 ¢ C3H, B 50(90) 87.4:6.6:6 42(75) 83 2RJ3R) 99
18 e C,H; B 30(75) 84:16 30(75) 90 (2R3R) 99
19 b -C;H, C 58(85) 71:2:27 - - - -
20 b i-CsH; D 57(81) 6:87.5:6.5 49(70) 80 25,38) 99

3 4:1) 6+ LiN(i-Pr), (1.1 equiv.), THF, —78°; 2) RZCHO, —78°,0.5 h.
B: 1) 6 + LICA (1.5 equiv.), THF, —78°%; 2) Mey(¢-Bu)SiCl (2.2 equiv.), HMPA (2 equiv.), —78°—0°; 3)
addition to R2CHO (1.1 equiv.), TiCl, (1.2 equiv.) in CH,Cl,, —78°, 0.5 h.
C: Analogous to 4 but using BF; - Et,O instead of TiCl,.
D: 1) 6 + LiN(i-Pr); (1.5 equiv.), THF/HMPA 3:{, —78°, 1 h; 2) Me,(1-Bu)SiTf (2.2 equiv.), —78°—=0%; 3)
addition of BFy - Et,0 (1.2 equiv.) to mixture of crude silylketene acetal + R2CHO (1.1 equiv.), —78°, 0.5 h.
) Yields in parentheses are based on recovered ester 6.
©)  Usually, only one ‘syn’-product was isolated which was either identified as 12a, 11b, or not assigned (series c¢);
product 9e was inseparable from its ‘syn’-isomer(s).

7y In Entry 11, a fourth, unidentified product was formed in 0.6% yield.
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the isolated (flash chromatography) diastereoisomers was readily assigned on examina-
tion of the H—C(2) signal in 'H-NMR [1b] (2.45-2.80 ppm) which shows a vicinal
coupling constant J(2,3) = 7.0-7.5 Hz for the ‘anti’-products 9b, 10b, 9¢, 10c, and Ye vs. a
coupling constant J(2,3) = 2.5-3.0 Hz for the ‘syn’-products 12a and 11b.

Kinetically controlled deprotonation [11] of propionate 6 with LiN(i-Pr)(cyclohexyl)
followed by enolate O-silylation gave a (tert-butyl)dimethylsilylketene acetal to which we
assign the (E)-configuration 7. Treatment of 7 with aldehyde/TiCl, ( Method B, Entries
15-18) furnished the corresponding aldols with greatly improved ‘anti’/‘syn’ ratios (4: 1
to 55:1) and (2R)-‘anti’/(28)-anti’ ratios (13:1). The major ‘anti’-aldols 9 were readily
purified to 99 % d.e. by flash chromatography and crystallization. Nondestructive cleav-
age of the auxiliary from the aldol was accomplished without a-epimerization by reduc-
tion with LiAlH, (e.g. 11b—(25,35)-2,4-dimethyl-1,3-pentadiol) or, more interestingly,
by mild hydrolysis with 1.6 N LiOH (40 equiv. in THF/H,O 1:1.2, r.t., 9-14 days) to give
B-hydroxy acids 13 in 83-90% yield). The tabulated absolute configurations of 13 follow
from chiroptic comparison with published values®). Acids 13 were shown to be > 99%
enantiomerically pure by measuring the MeO signals of their methyl esters in the 'H-
NMR in the presence of the chiral shift reagent Eu(hfc), [10d].

Two further trends are evident from the data in Table 2. First, the use of BF; - Et,0
(Entry 19) leads to a decrease of the ‘anti’/‘syn’ ratio as compared to that of TiCl, { Entry
16). Second, the (Z)-ketene acetal 8 was obtained by deprotonation of 6 under thermody-
namic control [11]; 8 furnished aldol 10b with excellent ‘anti’ selection even under the
influence of BF, - Et,0 (Method D, Entry 20). Accordingly, each of the enantiomeric

Scheme 3
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(2R,3R)- or (25,35)-hydroxy acids 13 may be prepared in 99% e.e. from the same
precursor depending on the (E)/(Z)-geometry of the enolate intermediate.

The observed stereoselectivities may be rationalized on inspection of the following
‘open’ transition state topologies [3a] A-D (Scheme 3). In analogy to former C(x)-Si-
face-selective electrophilic attack to (£)-‘enolates’ I (Met = Li or Si Me,) [5~7], we assume
a synperiplanar disposition of the C—OMet/(O)C—H bonds and an aldehyde approach
from the less shielded olefinic back face. In line with previous suggestions, we assume a
Lewis-acid coordination with the aldehyde O-atom ‘cis’ to its H-atom [3a] which, due to
ML,/R' repulsion, destabilizes transition states B and D. In the propionate series
(R'= CH,), we suppose this nonbonding interaction to override that between R? and
OX* which disfavors transition states A and D. Thus, the preferences A > B and C> D
seem to govern the ‘anti’-selective formation of aldols 9 or 10 from the (E)- or (Z)-ketene
acetals 7 or 8 (Met = Si(z-Bu)Me,), respectively. For the acetate aldolisations (R'! = H),
the R'/ML, repulsion becomes irrelevant, and it is the gauche interaction R?/OX* which
disfavors A = D over B = C. Accordingly, aldols 4 appear to be formed via the latter
transition state. In agreement with this postulate, acetate aldolisations 1-2—4 display
similar inductions with BF, - Et,O or TiCl,, whereas the nature of the Lewis acid is critical
in the propionate series 6b—7b—9b (Entries 16 and 19). On comparing the aldolisation
of the (E)- (7-9b) vs. that of the (Z)-ketene acetal (8 10b), the latter reveals a higher
anti selection consistent with the preferences A > B and C >> D (Entries 19 and 20).

In practical terms we believe that the above aldolisations compare favorably with
alternative [2] [3] or less direct?) approaches to enantiomerically pure acetate aldols and
‘anti’-propionate aldols. This work highlights once more the versatility of simple cam-
phorsulfonic-acid-derived auxiliaries in asymmetric synthesis [5-7].
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